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We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is
probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which
are characterized by a topological �skyrmion� number N and they have been observed in mesoscopic magnetic
elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially
symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion
of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to
a bubble which contains a pair of Bloch lines and has N=0. The N=0 bubble can be switched back to a N
=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are
described by employing the skyrmion number and the moments of the associated topological density.
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I. INTRODUCTION

Magnetic bubbles are observed as spots of opposite mag-
netization in an otherwise uniformly magnetized film. They
were studied extensively since their first observation in the
1960s in ferromagnetic films with perpendicular
anisotropy.1,2 The statics and dynamics of magnetic bubbles
proved to be a subject of surprising complexity. One of the
most interesting phenomena is their response to an external
inhomogeneous field. In a counterintuitive way, they are
known to be deflected at an angle to an external magnetic
field gradient. This was shown to be directly connected to
their nontrivial topological structure. They carry a topologi-
cal number called the skyrmion number which enters in a
collective coordinate description of bubble dynamics.3,4

In the last years, it was shown experimentally that single
magnetic bubbles can be sustained in disk-shaped magnetic
elements with perpendicular anisotropy.5–7 Although these
have the same gross features and the same topological struc-
ture as their counterparts in films, their statics is significantly
different. Magnetic bubbles in disk elements are sustained
without an external field and they may be ground magnetic
states for magnetic elements of appropriate sizes.8–10 A de-
tailed study of magnetic bubbles in FePt nanodots was car-
ried out in Ref. 7 using numerics and magnetic-force micros-
copy �MFM� imaging of arrays of dots with various
diameters. In particular, almost circular magnetic bubbles
confined in the center of the dots were observed as a com-
mon bidomain state in sufficiently small dots. Tridomain
states which have the form of concentric rings with alternat-
ing magnetization were also observed, and they can be inter-
preted as multidomain magnetic bubbles.

The extensive experimental research of the last years on
topologically nontrivial structures in magnetic nanoelements
has focused largely on magnetic vortices. These are sponta-
neously created in magnetic elements with no or a small
magnetic anisotropy. The dynamics of vortices has been ob-
served in time-resolved experiments which revealed the pro-
found role of the vortex polarity on their dynamics.11 This
means that the vortex topological structure is closely related

to their dynamics, as also noted above for magnetic bubbles.
In the present paper we shall focus on bubble dynamics in

magnetic nanoelements. The observations of magnetic
bubbles of various topological structures7 suggest that per-
pendicular anisotropy dots can be used to significantly widen
the scope for dynamical experiments in ferromagnetic ele-
ments, beyond the current work on vortex dynamics. We
expect an unusual dynamical behavior. The dynamics of
bubbles should be expected to bear similarities to that of
vortices because they both carry a nonzero skyrmion number.
It is one of the aims of the present work to emphasize that
similarities in dynamics can be traced to similarities in topo-
logical structures. Our study of the details of bubble dynam-
ics in magnetic nanoelements is motivated by interest in fun-
damental processes in the magnet as well as by the potential
of magnetic elements for technological applications.

The paper is organized as follows. In Sec. II we discuss
the bubble skyrmion number and its relation to dynamics. In
Sec. III we present our results on the dynamics of a bubble
with skyrmion number unity and show that it exhibits gyro-
tropic motion. In Sec. IV we show that a bubble with skyr-
mion number unity can be switched to a different bubble
with skyrmion number zero. In Sec. V we show that a bubble
with skyrmion number zero can be switched back to one
with skyrmion number unity. The last Sec. VI contains our
concluding remarks.

II. BUBBLE DYNAMICS AND TOPOLOGY

The dynamics of the magnetization vector M is given by
the Landau-Lifshitz �LL� equation with a Gilbert damping
term. We suppose a material with saturation magnetization
Ms, exchange constant A, and a uniaxial perpendicular aniso-
tropy with constant K. In a rationalized form the LL equation
can be written as

�m

��
= − �1m � f − �2m � �m � f� ,
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f � �m − Qmzêz + h + hext, �1�

where m�M /Ms is the normalized magnetization, h
�H /Ms and hext�Hext /Ms are the normalized magneto-
static and external fields, Q�2K / ��0Ms

2� is the quality fac-
tor, and êz is the unit vector in the third �z� magnetization
direction �taken to be the easy axis�. If � is the dissipation
constant then �1�1 / �1+�2� , �2�� / �1+�2�. The length
and time units in Eq. �1� are

�ex � �2A/��0Ms
2�, �0 � 1/��Ms� , �2�

where � is the gyromagnetic ratio and we will present our
results in these units.

In the next sections we perform numerical simulations
based on the LL equation using the OOMMF micromagnetics
simulator.12 We typically use the parameter values Ms
=106 A /m, A=10−11 J /m, and K=1.3�106 J /m, which
give

�ex = 4 nm, �0 = 4.5 ps, Q = 2.1. �3�

These correspond to FePt, although the anisotropy value lies
in the lower limit for this material. Our results �when quoted
in units of �ex ,�0� are independent of the specific numerical
values.

A magnetic bubble is a circular domain of opposite mag-
netization in an otherwise uniformly magnetized film perpen-
dicular to the film surface. In a magnetic element of submi-
crometer dimensions such a circular domain can be
spontaneously created in the center of the particle and it is a
remanent state.5–7 The magnetic bubble has a nontrivial to-
pological structure which is only revealed when we consider
the in-plane magnetization components, or, in other words,
the domain wall between the bubble domain �which we shall
consider to point “down,” i.e., m= �0,0 ,−1�� and the periph-
ery of the particle �which we shall consider to point “up,”
i.e., m= �0,0 ,1��.

The complexity of the magnetization configuration can be
quantified by a topological invariant called the skyrmion
number. This is defined as

N =
1

4�
� ndxdy, n �

1

2
	�
��
m � ��m� · m , �4�

where 	�
 is the antisymmetric tensor �� ,
=1,2� and n is a
topological density which is integrated over the plane. The
integration gives an integer value for N in the case of an
infinite two-dimensional medium where the magnetization m
goes to a constant value at spatial infinity. We expect a de-
viation from this rule for the present case of a magnetic
element. For the purposes of the present paper we shall con-
sider that the plane of integration is the top surface of a disk
element. The result for N depends in general on the choice of
the plane of integration. However, we expect that the mag-
netization vector takes the value m��0,0 ,1� on the side
surface of the particle. This would guarantee that the integral
given in Eq. �4� will be almost independent of the plane of
integration and the value of N will be close to an integer.
Indeed, N is very close to an integer for materials with very
strong anisotropy, as is the case in the present work, �see Ref.
7 for numerical solutions for such bubbles�. In the case of

weaker anisotropy5,6 significant deviations from an integer
value may occur depending on the specific parameters of the
system �see Ref. 10 for numerical solutions for the latter
bubbles�. A noninteger value of N may not change signifi-
cantly the picture for bubble dynamics but it would make the
theoretical analysis more complicated.

The magnetic bubbles observed in Refs. 5–7 are most
likely axially symmetric, according to symmetry and energy
arguments, and they therefore have N=1.9 Such a bubble is
shown in Fig. 1�a�. A different bubble with N=0 is shown in
Fig. 1�b� and the differences in the domain walls of the two
bubbles are obvious. It is useful to note here that the skyr-
mion number of a vortex takes half-integer values. This is
N= �1 /2 for almost all vortices commonly observed in
magnetically soft dots, where the sign depends on the vortex
“polarity” �that is, the direction of the magnetization in the
vortex center�.

The skyrmion number N is directly related to the magne-
tization dynamics as has been seen in many experiments.1,2

This effect has been studied in Ref. 3 where a collective
coordinate model for bubble dynamics is expressed with the
use of the “gyrocoupling vector,” whose length is a quantity
proportional to N. The dynamical properties of topological
solitons in two-dimensional ferromagnets with uniaxial an-
isotropy were later considered in Ref. 13. Furthermore, the
skyrmion number has direct implications for the unambigu-
ous definition of conservation laws �e.g., the linear momen-
tum� for the Landau-Lifshitz equation.14,15 The profound ef-
fect of the skyrmion number on vortex dynamics can be seen
in recent experiments. For example, the effect of vortex po-
larity has been studied in Refs. 11 and 16.

In the literature extensive use has been made of a topo-
logical number called the winding number S. This gives the

a)

b)

FIG. 1. Bubbles with �a� N=1 and �b� N=0. Only the domain
wall is shown. We suppose that the magnetization points down in-
side the wall while it points up outside it.
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number of times that the magnetization vector winds around
a full circle as we trace a circle around the center of a vortex
or a bubble. For simple structures �such as vortices or the
bubbles studied in this paper� S is related to N through the
simple relation, i.e., N=−1 /2Sp, that is, N depends both on
S as well as on the vortex or bubble polarity p. For more
complicated topological solitons there is no simple relation
between the two topological numbers.

III. GYROTROPIC DYNAMICS OF THE N=1 BUBBLE

We perform numerical simulations based on the LL equa-
tion using the OOMMF micromagnetics simulator.12 We simu-
late a magnetic bubble in a disk-shaped magnetic element
with diameter D=40�ex �160 nm� and thickness t=8�ex �32
nm�. We discretize space on the �x ,y� plane using a lattice
spacing �x=�y=0.4�ex �1.6 nm� and assume uniform mag-
netization along the axis of the disk, which is taken to be in
the third �z� direction. We start the micromagnetics simulator
using as an initial configuration a crude model for a N=1
bubble. In terms of the components of the magnetization in
cylindrical coordinates this is

�m
,m�,mz� = 	�0,0,− 1� , 
 � Ra,

�0,1,0� , Ra � 
 � Rb,

�0,0,1� , 
 � Rb,

 �5�

where 
 is the radial coordinate, Ra and Rb are constants and
they have typically been chosen as Ra=0.4D and Rb
=0.55D. It points down in the dot center, up in the dot pe-
riphery, and azimuthally in the domain wall between the two
domains, which is located at Ra�
�Rb. In our first numeri-
cal simulation, we evolve Eq. �1� in time using a large dis-
sipation constant and we eventually obtain a static magnetic
bubble as a remanent state. This is a circular domain at the
center of the dot, which is surrounded by a domain wall.7,9

The magnetic configuration is axially symmetric, i.e., the
magnetization components m
 ,m� ,mz depend on the cylin-
drical coordinates 
 and z only. Such a configuration has a
skyrmion number N=1 and it is shown in Fig. 1�a�.

We aim to study the dynamical behavior of the magnetic
bubble described in the preceding paragraph. For this pur-
pose we apply an external magnetic field pointing along the
perpendicular direction z. The simplest choice would be a
uniform external field but this would merely make the bubble
shrink or expand.9 Here, we rather aim to study the bubble
motion when this is shifted from its equilibrium position at
the dot center. This can be achieved by an external magnetic-
field gradient, as has been shown in the work for magnetic
bubbles in continuous films.1,2 We choose a field with a gra-
dient along the x direction, i.e.,

hext = �0,0,hext�, hext = gx , �6�

where g is the dimensionless strength of the gradient. Such a
field generates a corresponding gradient of the external field
energy. One would expect a translation of the bubble along
the field gradient, i.e., along the x direction. The detailed
numerical simulation does, however, show quite different dy-
namics than this expectation as will be explained in the fol-
lowing.

We evidently need to follow the bubble position in order
to measure the effect of the external field gradient. There is
no obvious absolute measure of this position but various
measures can be defined. A relatively simple one is given by
the following moments of the magnetization:

X =
� x�mz − 1�dV

� �mz − 1�dV

, Y =
� y�mz − 1�dV

� �mz − 1�dV

, �7�

which give the mean position of the bubble domain �where
mz=−1 and Mz=−Ms�. Another measure of the bubble posi-
tion is defined as14

Rx =
� xndV

� ndV

, Ry =
� yndV

� ndV

, �8�

where n is the topological density defined in Eq. �4�. Equa-
tion �8� gives the location of the nontrivial topological struc-
ture of the bubble. This is referred to as the guiding center of
the bubble. The latter definition is obviously only valid when
N�0. The moments of the topological density �Eq. �8�� are
significant for the dynamics as they are proportional to the
components of the linear momentum of the magnetization
field within the LL equation. Their short-time behavior gives
a qualitatively correct description of the unusual skew de-
flection of magnetic bubbles under a field gradient.14,15

In the series of numerical simulations which we present in
the following we use as an initial condition the static mag-
netic bubble in the dot center which we have previously
found. We apply the external magnetic field �Eq. �6��, choose
a realistic dissipation constant �=0.01, and follow the dy-
namics of the bubble in time, as given by the LL Eq. �1�. The
strength of the field gradient, in this simulation, is chosen to
be g=−0.0025. This value practically means that the external
field is hext=0.05Ms at the left end of the dot �at x=−D /2
=−20�ex� and it is gradually reduced to become hext=
−0.05Ms at the right end of the dot �at x=D /2=20�ex�. The
field is applied for a time period of �=44.5�0 �200 ps� and it
is then switched off completely.

The bubble orbit as given by the moments of the magne-
tization �Eq. �7�� and also by the moments of the topological
density �Eq. �8�� is shown in Fig. 2. During the application of
the external field, the moments �Eq. �7�� give a skew deflec-
tion of the bubble with respect to the field gradient toward
the first quadrant. The moments �Eq. �8�� indicate more
clearly a motion along the direction perpendicular to the field
gradient during the initial stages of the simulation. It is im-
pressive that Ry appears to follow a rectilinear motion for
times ��11�0 �50 ps� with a measured velocity

�dRx

d�
,
dRy

d�
� � �0.0,0.095�

�ex

�0
. �9�

This dynamical behavior is anticipated by the results of
Refs. 14 and 15, although it should be noted that those refer
to infinite continuous films. The approach of the same refer-

DYNAMICS AND SWITCHING PROCESSES FOR MAGNETIC… PHYSICAL REVIEW B 79, 224429 �2009�

224429-3



ences has produced formulae for the initial velocity �at �
=0� of the bubble. We reproduce these formulae in the
present notation for convenience,

dRx

d�
= − �2

g


4�Nt
,

dRy

d�
= �1

g�

4�Nt
, �10�

where t is the film thickness, � is the total magnetization in
the third direction, and 
 is essentially the anisotropy energy,

� =� �mz − 1�dV, 
 =
1

2
� �1 − mz

2�dV . �11�

All quantities are measured in units �Eq. �2��. In order to find
numerical values, we substitute in Eq. �11� the configuration
of the static bubble and find � / t=−815, 
 / t=41. We then
obtain

�dRx

d�
,
dRy

d�
� = �0.00008,0.16�

�ex

�0
, �12�

which clearly gives a deflection of the bubble perpendicular
to the direction of the field gradient. The velocity dRy /d� is
much larger than dRx /d� because �1��2 �for �=0.01� and
because the bubble total magnetization � �which is propor-
tional to the bubble area� is much larger than its anisotropy
energy 
 �which is proportional to the length of the bubble
domain wall�.

The result in Eq. �12� gives correctly the tendency of
�Rx ,Ry� to move along the y direction, although the calcu-
lated velocity value is about 60% in error. However, one
should keep in mind that Eq. �10� was derived for infinite
films and they hold only at the very beginning of the process.

When the external field is switched off at �=44.5�0 �200
ps� the bubble is in the first quadrant at �Rx ,Ry�
= �2.1,2.5��ex while �X ,Y�= �1.3,1.6��ex. We then observe an
almost circular motion of the �Rx ,Ry� orbit of the particle
with a radius 
3�ex. The type of motion for �X ,Y� is more
involved and its trajectory is roughly a pentagon, as seen in
Fig. 2. The period of this almost periodic motion is approxi-
mately T=230�0 �1 ns� �i.e., frequency f =1 GHz�.

The bubble, certainly, does not move as a rigid body
around the dot center. The details of its motion can be seen in
the three snapshots presented in Fig. 3. The initial state is
shown in Fig. 3�a�. �This is the same configuration as in Fig.
1�a� except that the whole element is shown now.� Figure
3�b� shows the configuration at time �=44.5�0, that is, at the
end of the application of the external field. While the bubble
preserves its general structure it has apparently shifted to the
first quadrant. Figure 3�c� shows the bubble at time �
=267�0 �1200 ps� when it has almost completed a full circle.
The deformation of the bubble is small and also the details of
the domain-wall structure are preserved. However, such a
coherent motion does not happen for large field gradients as
will be explained in the next section.

We have also repeated the simulation with a stronger field
gradient g=−0.005. The results are similar to those described
in the preceding paragraphs. The initial velocity for the
bubble is now dRy /d�=0.19, i.e., twice the value given in
Eq. �9�. Thus the bubble velocity seems to be proportional to
g in agreement with the prediction of Eq. �10�. The bubble is

-4 -2 0 2 4
X , R

x

-4

-2

0

2

4

Y
,

R
y

(R
x
, R

y
)

(X, Y)

FIG. 2. �Color online� The orbit of the bubble under an external
field gradient �Eq. �6�� with g=−0.0025. The solid line shows the
coordinates �Rx ,Ry� of Eq. �8�. The dashed line shows the coordi-
nates �X ,Y� of Eq. �7�. The circles mark the bubble position at times
which are multiples of 5.33�0 �15 ps�. The arrows indicate the point
where the field is switched off.

FIG. 3. �Color online� Snapshots from the simulation for a bubble with N=1 under external field gradient �Eq. �6�� with g=−0.0025.
They show the bubble �a� at the dot center �at time �=0�, �b� when the external field is switched off ��=44.5�0�200 ps��, and �c� when this
has completed a cycle around the dot center ��=267�0�1200 ps��.
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later set in a circular motion around the center of the dot. The
period of this motion is similar to that given in the g=
−0.0025 case �i.e., T�1 ns�, although we obtain a displace-
ment of the bubble from the dot center significantly larger,
roughly twice that shown in Fig. 2.

IV. SWITCHING OF THE N=1 BUBBLE

We further study the response of the magnetic bubble to
field gradients larger than those used in the previous section.
We typically use in this section a large field-gradient strength
g=−0.025. The field is applied only until �=10�0 �45 ps�. At
initial times the coordinate Ry is rapidly increasing while Rx
remains almost zero for ��10�0. This motion is shown in
Fig. 4. We observe a linear increase in Ry until the field is
switched off. The measured velocity dRy /d�=1.0 is approxi-
mately ten times larger than the velocity found for g=
−0.0025 in the previous section. This shows that dRy /d� is
proportional to g. The velocity predicted by Eq. �10� is
dRy /d�=1.6 and it is roughly in agreement with the numeri-
cal results �as discussed in the g=−0.0025 case�.

The position vector �X ,Y� is displaced from the origin by
a small distance 
1�ex, as seen in Fig. 4. This is a much
shorter distance than that observed in the previous section
�see Fig. 2�. This is because the field gradient is now applied
for a much shorter time. Unlike the velocity for �Rx ,Ry�, the
velocity for the coordinates �X ,Y� is apparently not propor-
tional to the strength of the field gradient g.

After the external field gradient is switched off the posi-
tion of the bubble, measured by �Rx ,Ry�, takes a sharp turn
and appears to start a cyclic motion around the dot center
similar to what was described in Sec. III. On the other hand,
the coordinates �X ,Y� follow a nonregular path close to the
dot center. Figure 5 shows snapshots of the simulation. At

some later time significant gradients of the magnetization
vector develop at the bubble domain wall. For example, at
�=83�0 �375 ps� �Fig. 5�b�� a part of the wall includes so-
called vertical Bloch lines �VBLs�.1 At �=85.5�0 �385 ps� an
abrupt change in the magnetization occurs at the region of
the domain wall where the VBLs had developed. This is
accompanied by a burst of spin waves. Figure 5�c� shows the
bubble after the domain wall has changed. Figure 6 shows
magnifications of a part of the bubble corresponding to Figs.
5�b� and 5�c�. A pair of VBLs is now part of the domain wall.
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(X, Y)(X, Y)

FIG. 4. The trajectory of the bubble under external field gradient
�Eq. �6�� with g=−0.025. The solid line shows the coordinates
�Rx ,Ry� of Eq. �8�. They have been traced until �=85.5�0 when we
have switching. The dashed line shows the coordinates �X ,Y� of Eq.
�7�, which have been traced until �=432�0.

FIG. 5. �Color online� Snapshots from the simulation for a
bubble under external field gradient �Eq. �6�� with g=−0.025. �a� A
remanent N=1 bubble in the dot center ��=0�, �b� the instant just
before the wall unwinding ��=83�0�375 ps��, where the arrow in-
dicates the area where the VBLs have developed, �c� the instant just
after the wall unwinding ��=85.5�0�385 ps��, where the arrow in-
dicates the same area as in the previous entry, and �d� a N=0
bubble as a remanent state �at the end of the simulation�.

FIG. 6. �Color online� Blow ups of a part of the bubble which
contains Bloch lines for �a� Fig. 5�b� and �b� Fig. 5�c� �the arrows
correspond to those in Fig. 5�.
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Configurations with VBLs have been studied within the con-
text of bubbles in films as reviewed in Ref. 1. A pair of VBLs
can be winding when the magnetization winds by 2� radians
as we move across them in the domain wall or nonwinding
when the magnetization has a local net winding of zero �in-
cluding a � and −� winding as we move across the wall�.1
The pair in Fig. 6�b� is a winding pair.

The transformation of the initial VBLs to a single pair of
VBLs is a discontinuous process. Such discontinuous pro-
cesses are normally impossible to induce because an infinite
energy barrier would have to be overcome. In magnetic sys-
tems the energy barrier would be due to the exchange energy
at regions with large magnetization gradients. However, the
exchange energy of a two-dimensional magnetization con-
figuration �e.g., a pair of VBLs� as this is shrinking is a finite
constant. This is due to the scale invariance of the exchange
energy in two dimensions �for example, see Refs. 17 and 18�.
Since the bubble is a quasi-two-dimensional magnetic con-
figuration the exchange energy in the region of the approach-
ing VBLs will not give an infinite energy barrier.

We should note here that a discontinuous change in the
magnetization cannot, in principle, be described by micro-
magnetics on a discrete numerical mesh. However, since in
the present case no singularities in the energy are involved,
one could argue, at least heuristically, that the numerical so-
lution on the discrete lattice does simulate correctly the pro-
cess which actually occurs in the atomic lattice of the mate-
rial. Such discountinuous changes have been reported in
experiments in films.1

Although the magnetic bubble seems to remain intact in
the dot even after the modification of the domain wall, a
dramatic change has indeed occurred at the microscopic
level. To show this we calculate the skyrmion number Eq. �4�
of the magnetization. This is very close to unity for the initial
bubble and it remains almost constant until the discontinuous
change in the magnetic configuration occurs. At time �
=85.5�0 the skyrmion number N changes almost instantly to
a value close to zero. Thus the discontinuous nature of the
process of the annihilation of VBLs is reflected in an abrupt
change from N=1 to N=0. The magnetic bubble with N
=0 is essentially different than the initial bubble with N=1.

The coordinates �Rx ,Ry� do not give a well-defined mea-
sure of the bubble position for N=0 since the denominators
in Eq. �8� vanish. The bubble position can be followed by the
coordinates �X ,Y� which are shown in Fig. 4. These take
small values and they follow an orbit which is complicated
and not a periodic one. That is, there is no trace of a gyro-
tropic �circular� motion of the bubble around the dot center,
in contrast to the case of the N=1 bubble. We relegate fur-
ther discussion of this point until the end of the next section.

For longer times the system will relax to a remanent state
due to dissipation. Since the relaxation process with our stan-
dard dissipation constant �=0.01 takes prohibitively long
simulation time, we actually use �for times well after �
=85.5�0� a large �=1 only for the purpose of quickly finding
the remanent state. The process of Fig. 5 eventually relaxes
to an almost cylindrical bubble with N=0 in the dot center
shown in Fig. 5�d�. The domain wall of the latter bubble is
shown more clearly in Fig. 1�b�, where a pair of winding
VBLs is seen. The two VBLs apparently attract each other

due to their magnetostatic field. We further discuss the de-
tails of the N=0 bubble in the next section.

In conclusion, the application of a strong magnetic-field
gradient on a dot which is in a bubble state with N=1 has
eventually switched it to a bubble with N=0. We add that the
field-gradient value g=−0.025 used in this section is indica-
tive. We have also tried a field gradient g=−0.0125 and have
obtained the switching process. Furthermore, we have
achieved switching events while keeping the same field gra-
dient �g=−0.025� but for different field-pulse durations.

Switching of the N=1 magnetic bubble into a N=0
bubble has apparently been observed for the first time in Ref.
19. A garnet film was used which was exchange coupled to a
magnetic layer. Apart from the bias field �which is necessary
in order to sustain a bubble in a film� an in-plane field was
applied. On top of these fields, 100 ns long pulses of a field
gradient perpendicular to the film were applied which led to
bubble switching. In other experiments with bubbles in con-
tinuous films changes in bubble dynamics have been ob-
served which have been attributed to changes in the bubble
skyrmion number.2

V. SWITCHING OF THE N=0 BUBBLE

The N=0 bubble was shown to be a remanent magnetic
state and we are therefore motivated to study it on its own
right. The N=1 bubble has energy E=2.797�10−16 J while
the N=0 bubble has E=2.824�10−16 J. Thus the latter is an
excited metastable state. Its domain wall contains a pair of
winding VBLs which are located close together. Magnetic
charges are accumulated around the VBLs, thus creating a
strong magnetostatic field in their vicinity.

We study in this section the dynamics of a N=0 bubble in
a nanodisc, following a procedure analogous to that in Sec.
IV. We perform numerical simulations using the remanent
bubble state, in the dot center, with skyrmion number N=0
�i.e., the state shown in Figs. 5�d� and 1�b��. We apply a
strong field gradient �Eq. �6�� with g=−0.025. The field is
switched off at time �=55�0 �250 ps�. We observe that the
bubble is displaced from the center of the dot. The orbit of
the bubble as given by the moments of Eq. �7� is shown by
the dashed line in Fig. 7. It moves in the first quadrant under
the influence of the field.

The structure of the bubble domain wall is getting in-
creasingly complicated under the influence of the field gra-
dient as the pair of winding VBLs are drifting around the
wall. The complicated dynamics of the domain wall contin-
ues even after the field is switched off. Figure 8 shows snap-
shots of the simulation. At time �=95.5�0 �430 ps� we ob-
serve that the two VBLs come close together �Fig. 8�b�� and
thus large magnetization gradients develop in a very short
region of the domain wall �indicated by an arrow�. Figure
9�a� shows a magnification of the part of the domain wall
which contains the pair of VBLs. This leads to annihilation
of the pair of VBLs as shown in Fig. 8�c� at time �=98�0
�440 ps�. Figure 9�a� shows that the VBLs have become
adjacent just before the annihilation while Fig. 9�b� shows a
magnification of the part of the domain wall where the VBL
pair annihilation took place.
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The annihilation of a pair of winding VBLs is a discon-
tinuous process. As also mentioned in the previous section,
such a process should be possible in the present two-
dimensional bubble configurations.

The discontinuous nature of the process of annihilation of
the pair of winding VBLs is reflected in an abrupt change in
the skyrmion number from N=0 to N=1 which happens
precisely at the time of the annihilation of VBLs. The N
=1 bubble is located off-center at the moment of its creation.
The trajectory of the bubble as given by Eqs. �7� and �8� is
shown in Fig. 7. We observe that once the skyrmion number
becomes unity the bubble starts a circular motion around the
dot center. The bubble motion is damped due to dissipation,
it follows a spiraling orbit and it eventually remains static at
the dot center. It is remarkable that the bubble motion is
reflected in a rather smooth circular trajectory for the mo-
ments of the local vorticity �solid line� compared to an
angled �nearly pentagonal� curve for the moments of mz
�dashed line�. The frequency of rotation is approximately 1
GHz. The above findings concerning the circular motion of
the N=1 bubble are fully consistent with the results reported
in Sec. III.

The results of the present and the previous sections indi-
cate differences between the dynamics of the N=0 and the
N=1 bubble. We have shown that the N=1 bubble, when
this is not in the dot center, goes on a gyrotropic motion as
seen in Figs. 2 and 7. The behavior of a N=0 bubble is
however less clear. We have seen in Sec. IV that the N=0
bubble created during a dynamical process does not undergo
a circular motion around the dot center. We did not clearly
observe a gyrotropic motion for the N=0 bubble in this sec-

tion either. Further numerical simulations support these find-
ings.

VI. CONCLUSIONS

We have presented a numerical study for the unusual dy-
namical behavior of a bubble in a magnetic nanoelement
under an external magnetic field gradient. It has been shown
that a bubble with skyrmion number N=1 is deflected at an
angle to the field gradient. The details of this skew deflection
of the bubble confirm previous theoretical studies. When the
external field is switched off the bubble is set on a gyrotropic
motion around the center of the nanoelement. Previous ex-
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FIG. 7. �Color online� The trajectory of a N=0 bubble which is
subject to an external field �Eq. �6�� with g=−0.025. The field is
switched off at �=55�0 �250 ps�. The bubble switches to a N=1
bubble at �=98�0 �440 ps�, which is indicated by the arrows. We
plot both the coordinates �Eq. �8�� �solid line�, which are defined
only after the switching for N=1, and the coordinates �Eq. �7��
�dashed line�. The total simulation time is �=555.5�0 �2.5 ns�.

FIG. 8. �Color online� Snapshots from the simulation for a
bubble under external field gradient �Eq. �6�� with g=−0.025. �a� A
remanent N=0 bubble in the dot center �at �=0�, �b� the instant just
before the wall unwinding where the arrow indicates the area where
the VBLs have developed ��=95.5�0�430 ps��, �c� the instant just
after the wall unwinding where the arrow indicates the same area as
in the previous entry ��=98�0�440 ps��, and �d� the final results of
the simulation, i.e., a static N=1 bubble.

FIG. 9. �Color online� Blow ups of a part of the bubble corre-
sponding to �a� Fig. 8�b� and �b� Fig. 8�c� �the arrows correspond to
those in Fig. 8�.
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perimental and theoretical studies on this subject refer to the
dynamical behavior of magnetic bubbles in infinite films.
The present study has applied the idea of an external mag-
netic field gradient in the context of a magnetic bubble in a
nanoelement.

A strong enough field gradient was shown to affect the
bubble structure profoundly and it induced a switching of the
N=1 bubble to a bubble with skyrmion number N=0. The
latter is shown to be a remanent state of the magnetic system.
Application of a similar field gradient to the N=0 bubble
induces a switching back to the original N=1 bubble. The
ultrafast switching between the two bubbles is achieved for
times below one nanosecond which could prove to be a sig-
nificant advantage for applications. Although the two
bubbles look very similar regarding their perpendicular com-
ponent of the magnetization they are essentially different
magnetic states. We did not observe a simple gyrotropic mo-
tion of the N=0 around the center of the nanoelement. How-
ever, the detailed features and especially the dynamics of this
bubble need further investigation.

A dramatic difference between the dynamics of bubbles
with N=0 and N�0 is anticipated by earlier theoretical
work. Thiele’s equations for bubble dynamics3 explicitly
contain the skyrmion number N. Furthermore, the skyrmion

number has direct implications for the unambiguous defini-
tion of conservation laws �e.g., the linear momentum� for the
Landau-Lifshitz equation.14,15 Equation �10� has been de-
rived based on the latter theory. Their denominators vanish
for N=0 thus implying that this should be treated as a sepa-
rate special case.

In view of the extensive recent literature on the dynamics
of a vortex in magnetic elements, our work extends the sub-
ject to other topological magnetic states such as magnetic
bubbles. While almost all vortices observed so far have the
same magnetization configuration, bubbles may have a vari-
ety of topological structures. This enriches the subject sig-
nificantly and opens new possibilities not only for theoretical
and experimental work but possibly also for technological
applications. A systematic study for the excitation spectrum
of bidomain and multidomain bubbles shows several inter-
esting resonances indicating a variety of dynamical
behaviors.20,21
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